Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Chinês | MEDLINE | ID: mdl-38563166

RESUMO

Objective:To analyze the mutation spectrum of 23-site chip newborn deafness genetic screening in Beijing, and to provide basis for genetic counseling and clinical diagnosis and treatment. Methods:The study included 21 006 babies born in Beijing from December 2022 to June 2023. All subjects underwent newborn deafness genetic screening in Beijing Tongren Hospital, covering 23 variants in 4 genes, the GJB2 gene(c.35delG, c.176_191del16, c.235delC, c.299_300delAT, c.109G>A, c.257C>G, c.512insAACG, c.427C>T, c.35insG), SLC26A4 gene(c.919-2A>G, c.2168A>G, c.1174A>T, c.1226G>A, c.1229C>T, c.1975G>C, c.2027T>A, c.589G>A, c.1707+5G>A, c.917insG, c.281C>T), Mt12SrRNA(m.1555A>G, m.1494C>T) and GJB3 gene(c.538C>T). The mutation detection rate and allele frequency were analyzed. Results:The overall mutation detection rate was 11.516%(2 419/21 006), with the GJB2 gene being the most frequently involved at 9.097%(1 911/21 006), followed by the SLC26A4 gene at 2.123%(446/21 006), the GJB3 gene at 0.362%(76/21 006) and Mt12SrRNA at 0.176%(37/21 006). Among the GJB2 genes, c.109G>A and c.235delC mutation detection rates were the highest, with 6.579%(1 382/21 006) and 1.795%(377/21 006), respectively. Of the SLC26A4 genes, c.919-2A>G and c.2168A>G had the highest mutation rates of 1.423%(299/21 006) and 0.233%(49/21 106), respectively. Regarding the allele frequency, GJB2 c.109G>A was the most common variant with an allele frequency of 3.359%(1 411/42 012), followed by the GJB2 c.235delC at 0.897%(377/42 012) and the SLC26A4 c.919-2A>G at 0.719%(302/42 012). Conclusion:23-site chip newborn deafness genetic screening in Beijing showed that GJB2 c.109G>A mutation detection rate and allele frequency were the highest. This study has enriched the epidemiological data of 23-site chip genetic screening mutation profiles for neonatal deafness, which can provide evidence for clinical practice.


Assuntos
Surdez , Perda Auditiva , Lactente , Recém-Nascido , Humanos , Conexinas/genética , Conexina 26/genética , Surdez/genética , Surdez/diagnóstico , Análise Mutacional de DNA , Transportadores de Sulfato/genética , Testes Genéticos , Mutação , Perda Auditiva/genética , Triagem Neonatal , China
2.
Plant Physiol Biochem ; 208: 108474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430787

RESUMO

The current trend in agricultural development is the establishment of sustainable agricultural systems. This involves utilizing and implementing eco-friendly biofertilizers and biocontrol agents as alternatives to conventional fertilizers and pesticides. A plant growth-promoting fungal strain, that could alter root system architecture and promote the growth of Arabidopsis seedlings in a non-contact manner by releasing volatile organic compounds (VOCs) was isolated in this study. 26S rDNA sequencing revealed that the strain was a yeast-like fungus, Papiliotrema flavescens. Analysis of plant growth-promoting traits revealed that the fungus could produce indole-3-acetic acid and ammonia and fix nitrogen. Transcriptome analysis in combination with inhibitor experiments revealed that P. flavescens VOCs triggered metabolic alterations, promoted auxin accumulation and distribution in the roots, and coordinated ethylene signaling, thus inhibiting primary root elongation and inducing lateral root formation in Arabidopsis. Additionally, transcriptome analysis and fungal infection experiments confirmed that pretreatment with P. flavescens stimulated the defense response of Arabidopsis to boost its resistance to the pathogenic fungus Botrytis cinerea. Solid-phase microextraction, which was followed by gas chromatography-mass spectrometry analysis, identified three VOCs (acetoin, naphthalene and indole) with significant plant growth-promoting attributes. Their roles were confirmed using further pharmacological experiments and upregulated expression of auxin- and ethylene-related genes. Our study serves as an essential reference for utilizing P. flavescens as a potential biological fertilizer and biocontrol agent.


Assuntos
Arabidopsis , Basidiomycota , Compostos Orgânicos Voláteis , Arabidopsis/genética , Compostos Orgânicos Voláteis/metabolismo , Raízes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Etilenos/metabolismo , Fungos/metabolismo
3.
Planta ; 257(6): 110, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149499

RESUMO

MAIN CONCLUSION: Based on phenotypic, physiological and proteomic analysis, the possible mechanism by which Ds-26-16 regulates salt tolerance in Arabidopsis seedlings was revealed. Functional and mechanistic characterization of salt tolerance genes isolated from natural resources is crucial for their application. In this study, we report the possible mechanism by which Ds-26-16, a gene from Dunaliella, and its point mutation gene EP-5, enhance salt tolerance in Arabidopsis seedlings. Both Ds-26-16 and EP-5 transgenic lines displayed higher seed germination rates, cotyledon-greening rates, soluble sugar contents, decreased relative conductivity and ROS accumulation when germinating under 150 mM NaCl conditions. Comparative proteomic analysis revealed that there were 470 or 391 differentially expressed proteins (DEPs) in Ds-26-16 or EP-5, respectively, compared with the control (3301) under salt stress. The GO and KEGG enrichment analyses showed the DEPs in Ds-26-16 vs. 3301 and EP-5 vs. 3301 were similar and mainly enriched in photosynthesis, regulation of gene expression, carbohydrate metabolism, redox homeostasis, hormonal signal and defense, and regulation of seed germination. Thirty-seven proteins were found to be stably expressed under salt stress due to the expression of Ds-26-16, and eleven of them contain the CCACGT motif which could be bound by the transcription factor in ABA signaling to repress gene transcription. Taken together, we propose that Ds-26-16, as a global regulator, improves salt-tolerance by coordinating stress-induced signal transduction and modulating multiple responses in Arabidopsis seedlings. These results provide valuable information for utilizing natural resources in crop improvement for breeding salt-tolerant crops.


Assuntos
Arabidopsis , Clorofíceas , Plântula/genética , Arabidopsis/metabolismo , Tolerância ao Sal/genética , Proteômica , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Germinação/genética
4.
Biosci Trends ; 17(2): 148-159, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062750

RESUMO

Concurrent screening has been proven to provide a comprehensive approach for management of congenital deafness and prevention of ototoxicity. The SLC26A4 gene is associated with late-onset hearing loss and is of great clinical concern. For much earlier detection of newborns with deafness-causing mutations in the SLC26A4 gene, the Beijing Municipal Government launched a chip for optimized genetic screening of 15 variants of 4 genes causing deafness based on a chip to screen for 9 variants of 4 genes, and 6 variants of the SLC26A4 gene have now been added. To ascertain the advantage of a screening chip including 15 variants of 4 genes, the trends in concurrent hearing and genetic screening were analyzed in 2019 and 2020. Subjects were 76,460 newborns who underwent concurrent hearing and genetic screening at 24 maternal and child care centers in Beijing from January 2019 to December 2020. Hearing screening was conducted using transiently evoked otoacoustic emissions (TEOAEs), distortion product otoacoustic emissions (DPOAE), or the automated auditory brainstem response (AABR). Dried blood spots were collected for genetic testing and 15 variants of 4 genes, namely GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3, were screened for using a DNA microarray platform. The initial referral rate for hearing screening decreased from 3.60% (1,502/41,690) in 2019 to 3.23% (1,124/34,770) in 2020, and the total referral rate for hearing screening dropped form 0.57% (236/41,690) in 2019 to 0.54% (187/34,770) in 2020, indicating the reduced false positive rate of newborn hearing screening and policies to prevent hearing loss conducted by the Beijing Municipal Government have had a significant effect. Positivity according to genetic screening was similar in 2019 (4.970%, 2,072/41,690) and 2020 (4.863%,1,691/34,770), and the most frequent mutant alleles were c.235 del C in the GJB2 gene, followed by c.919-2 A > G in the SLC26A4 gene, and c.299 del AT in the GJB2 gene. In this cohort study, 71.43% (5/7) of newborns with 2 variants of the SLC26A4 gene were screened for newly added mutations, and 28.57% (2/7) of newborns with 2 variants of the SLC26A4 gene passed hearing screening, suggesting that a screening chip including 15 variants of 4 genes was superior at early detection of hearing loss, and especially in early identification of newborns with deafness-causing mutations in the SLC26A4 gene. These findings have clinical significance.


Assuntos
Surdez , Perda Auditiva , Humanos , Recém-Nascido , Pequim , Estudos Transversais , Estudos de Coortes , Conexinas/genética , Conexina 26/genética , Testes Genéticos , Surdez/genética , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Mutação/genética , China , Audição , Análise Mutacional de DNA
5.
Front Microbiol ; 11: 625450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597933

RESUMO

Phosphorus in the soil accessible to plants can easily be combined with calcium ion, the content of which is high in karst rocky desertification (KRD) regions, thereby resulting in a low utilization efficiency of phosphorus. The application of phosphate-solubilizing bacteria (PSB) from the KRD region would facilitate enhanced phosphate availability in the soil. In the present study, the strains belonging to Acinetobacter, Paraburkholderia, and Pseudomonas with efficient phosphate-solubilizing ability were isolated from fruit tree rhizosphere soils in KRD regions. Particularly, Acinetobacter sp. Ac-14 had a sustained and stable phosphate-solubilizing ability (439-448 mg/L, 48-120 h). Calcium carbonate decreased the phosphate-solubilizing ability in liquid medium; however, it did not affect the solubilization index in agar-solidified medium. When cocultivated with Arabidopsis thaliana seedling, Ac-14 increased the number of lateral roots, fresh weight, and chlorophyll content of the seedlings. Metabolomics analysis revealed that Ac-14 could produce 23 types of organic acids, majorly including gluconic acid and D-(-)-quinic acid. Expression of Ac-14 glucose dehydrogenase gene (gcd) conferred Pseudomonas sp. Ps-12 with a sustained and stable phosphate-solubilizing ability, suggesting that the production of gluconic acid is an important mechanism that confers phosphate solubilization in bacteria. Moreover, Ac-14 could also produce indole acetic acid and ammonia. Collectively, the isolated Ac-14 from KRD regions possess an efficient phosphate-solubilizing ability and plant growth-promoting effect which could be exploited for enhancing phosphorus availability in KRD regions. This study holds significance for the improvement of soil fertility and agricultural sustainable development in phosphorus-deficient KRD regions.

6.
Sci Rep ; 9(1): 18408, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804618

RESUMO

Microorganisms play important roles in soil improvement. Therefore, clarifying the contribution of environmental factors in shaping the microbial community structure is beneficial to improve soil fertility in karst rocky desertification areas. Here, the bacterial community structures of eight rhizospheric soil samples collected from perennial fruit plantations were analysed using an Illumina HiSeq2500 platform. The diversity and abundance of bacteria in rocky desertification areas were significantly lower than those in non-rocky desertification areas, while the bacterial community structure was not significantly different between root surface and non-root surface soils in the same rhizospheric soil samples. Proteobacteria predominated in rocky desertification areas, while Actinobacteria predominated in non-rocky desertification areas. Correlation analysis revealed that water-soluble phosphorus content (r2 = 0.8258), latitude (r2 = 0.7556), altitude (r2 = 0.7501), and the age of fruit trees (r2 = 0.7321) were positively correlated with the bacterial community structure, while longitude, pH, and total phosphorus content did not significantly influence the soil bacterial community structure. As water-soluble phosphorus content is derived from insoluble phosphorus minerals, supplementing phosphorus-solubilising bacteria to soils in rocky desertification areas is a feasible strategy for accelerating the dissolution of insoluble phosphorus minerals and improving agricultural production and environment ecology.


Assuntos
Microbiota/genética , Microbiologia do Solo , Solo/química , Árvores/microbiologia , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Agricultura/métodos , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , China , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Conservação dos Recursos Naturais/legislação & jurisprudência , DNA Bacteriano/genética , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Fósforo/química , Fósforo/metabolismo , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Rizosfera , Árvores/fisiologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...